nimare.meta.ibma.Stouffers
- class Stouffers(use_sample_size=False, **kwargs)[source]
Bases:
IBMAEstimatorA t-test on z-statistic images.
Requires z-statistic images.
This method is described in Stouffer et al.1.
- Parameters
use_sample_size (
bool, optional) – Whether to use sample sizes for weights (i.e., “weighted Stouffer’s”) or not, as described in Zaykin2. Default is False.
Notes
Requires
zimages and optionally the sample size metadata field.fit()produces aMetaResultobject with the following maps:“z”
Z-statistic map from one-sample test.
“p”
P-value map from one-sample test.
Warning
Masking approaches which average across voxels (e.g., NiftiLabelsMaskers) will result in invalid results. It cannot be used with these types of maskers.
All image-based meta-analysis estimators adopt an aggressive masking strategy, in which any voxels with a value of zero in any of the input maps will be removed from the analysis.
References
- 1
Samuel A Stouffer, Edward A Suchman, Leland C DeVinney, Shirley A Star, and Robin M Williams Jr. The american soldier: adjustment during army life.(studies in social psychology in world war ii), vol. 1. Studies in social psychology in World War II, 1949.
- 2
Dmitri V Zaykin. Optimally weighted z-test is a powerful method for combining probabilities in meta-analysis. Journal of evolutionary biology, 24(8):1836–1841, 2011. URL: https://doi.org/10.1111/j.1420-9101.2011.02297.x, doi:10.1111/j.1420-9101.2011.02297.x.
See also
pymare.estimators.StoufferCombinationTestThe PyMARE estimator called by this class.
Methods
fit(dataset[, drop_invalid])Fit Estimator to Dataset.
get_params([deep])Get parameters for this estimator.
load(filename[, compressed])Load a pickled class instance from file.
save(filename[, compress])Pickle the class instance to the provided file.
set_params(**params)Set the parameters of this estimator.
- fit(dataset, drop_invalid=True)[source]
Fit Estimator to Dataset.
- Parameters
- Returns
Results of Estimator fitting.
- Return type
- Variables
inputs (
dict) – Inputs used in _fit.
- classmethod load(filename, compressed=True)[source]
Load a pickled class instance from file.
- Parameters
- Returns
obj – Loaded class object.
- Return type
class object
- set_params(**params)[source]
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object.- Return type
self