Coordinate-based meta-analysis algorithms

A tour of CBMA algorithms in NiMARE.

This tutorial is intended to provide a brief description and example of each of the CBMA algorithms implemented in NiMARE. For a more detailed introduction to the elements of a coordinate-based meta-analysis, see other stuff.

Load Dataset

Note

The data used in this example come from a collection of NIDM-Results packs downloaded from Neurovault collection 1425, uploaded by Dr. Camille Maumet.

Creation of the Dataset from the NIDM-Results packs was done with custom code. The Results packs for collection 1425 are not completely NIDM-Results-compliant, so the nidmresults library could not be used to facilitate data extraction.

import os

from nilearn.plotting import plot_stat_map

from nimare.correct import FWECorrector
from nimare.dataset import Dataset
from nimare.utils import get_resource_path

dset_file = os.path.join(get_resource_path(), "nidm_pain_dset.json")
dset = Dataset(dset_file)

# Some of the CBMA algorithms compare two Datasets,
# so we'll split this example Dataset in half.
dset1 = dset.slice(dset.ids[:10])
dset2 = dset.slice(dset.ids[10:])

Multilevel Kernel Density Analysis

from nimare.meta.cbma.mkda import MKDADensity

meta = MKDADensity()
results = meta.fit(dset)

corr = FWECorrector(method="montecarlo", n_iters=10, n_cores=1)
cres = corr.transform(results)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    threshold=0.1,
)
plot_stat_map(
    cres.get_map("z_level-voxel_corr-FWE_method-montecarlo"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    threshold=0.1,
)
  • 01 plot cbma
  • 01 plot cbma

Out:

  0%|          | 0/10 [00:00<?, ?it/s]
 10%|#         | 1/10 [00:00<00:03,  2.70it/s]
 20%|##        | 2/10 [00:00<00:02,  2.76it/s]
 30%|###       | 3/10 [00:01<00:02,  2.76it/s]
 40%|####      | 4/10 [00:01<00:02,  2.78it/s]
 50%|#####     | 5/10 [00:01<00:01,  2.77it/s]
 60%|######    | 6/10 [00:02<00:01,  2.78it/s]
 70%|#######   | 7/10 [00:02<00:01,  2.77it/s]
 80%|########  | 8/10 [00:02<00:00,  2.77it/s]
 90%|######### | 9/10 [00:03<00:00,  2.77it/s]
100%|##########| 10/10 [00:03<00:00,  2.77it/s]
100%|##########| 10/10 [00:03<00:00,  2.77it/s]

<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7f59f69b46d0>

MKDA Chi-Squared

from nimare.meta.cbma.mkda import MKDAChi2

meta = MKDAChi2(kernel__r=10)
results = meta.fit(dset1, dset2)

corr = FWECorrector(method="montecarlo", n_iters=10, n_cores=1)
cres = corr.transform(results)

plot_stat_map(
    results.get_map("z_desc-consistency"),
    draw_cross=False,
    cmap="RdBu_r",
    threshold=0.1,
)
plot_stat_map(
    cres.get_map("z_desc-consistencySize_level-cluster_corr-FWE_method-montecarlo"),
    draw_cross=False,
    cmap="RdBu_r",
    threshold=0.1,
)
  • 01 plot cbma
  • 01 plot cbma

Out:

/home/docs/checkouts/readthedocs.org/user_builds/nimare/checkouts/744/nimare/meta/cbma/mkda.py:392: RuntimeWarning: invalid value encountered in true_divide
  pFgA = pAgF * pF / pA
/home/docs/checkouts/readthedocs.org/user_builds/nimare/checkouts/744/nimare/meta/cbma/mkda.py:398: RuntimeWarning: invalid value encountered in true_divide
  pFgA_prior = pAgF * self.prior / pAgF_prior

  0%|          | 0/10 [00:00<?, ?it/s]
 10%|#         | 1/10 [00:00<00:06,  1.45it/s]
 20%|##        | 2/10 [00:01<00:05,  1.47it/s]
 30%|###       | 3/10 [00:02<00:04,  1.46it/s]
 40%|####      | 4/10 [00:02<00:04,  1.46it/s]
 50%|#####     | 5/10 [00:03<00:03,  1.46it/s]
 60%|######    | 6/10 [00:04<00:02,  1.46it/s]
 70%|#######   | 7/10 [00:04<00:02,  1.47it/s]
 80%|########  | 8/10 [00:05<00:01,  1.47it/s]
 90%|######### | 9/10 [00:06<00:00,  1.47it/s]
100%|##########| 10/10 [00:06<00:00,  1.47it/s]
100%|##########| 10/10 [00:06<00:00,  1.47it/s]

<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7f59f663bad0>

Kernel Density Analysis

from nimare.meta.cbma.mkda import KDA

meta = KDA()
results = meta.fit(dset)

corr = FWECorrector(method="montecarlo", n_iters=10, n_cores=1)
cres = corr.transform(results)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    threshold=0.1,
)
plot_stat_map(
    cres.get_map("z_desc-size_level-cluster_corr-FWE_method-montecarlo"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    threshold=0.1,
)
  • 01 plot cbma
  • 01 plot cbma

Out:

  0%|          | 0/10 [00:00<?, ?it/s]
 10%|#         | 1/10 [00:00<00:03,  2.66it/s]
 20%|##        | 2/10 [00:00<00:02,  2.72it/s]
 30%|###       | 3/10 [00:01<00:02,  2.72it/s]
 40%|####      | 4/10 [00:01<00:02,  2.71it/s]
 50%|#####     | 5/10 [00:01<00:01,  2.72it/s]
 60%|######    | 6/10 [00:02<00:01,  2.69it/s]
 70%|#######   | 7/10 [00:02<00:01,  2.70it/s]
 80%|########  | 8/10 [00:02<00:00,  2.71it/s]
 90%|######### | 9/10 [00:03<00:00,  2.71it/s]
100%|##########| 10/10 [00:03<00:00,  2.71it/s]
100%|##########| 10/10 [00:03<00:00,  2.71it/s]

<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7f59f65b37d0>

Activation Likelihood Estimation

from nimare.meta.cbma.ale import ALE

meta = ALE()
results = meta.fit(dset)

corr = FWECorrector(method="montecarlo", n_iters=10, n_cores=1)
cres = corr.transform(results)

plot_stat_map(
    results.get_map("z"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    threshold=0.1,
)
plot_stat_map(
    cres.get_map("z_desc-size_level-cluster_corr-FWE_method-montecarlo"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    threshold=0.1,
)
  • 01 plot cbma
  • 01 plot cbma

Out:

  0%|          | 0/10 [00:00<?, ?it/s]
 10%|#         | 1/10 [00:00<00:05,  1.54it/s]
 20%|##        | 2/10 [00:01<00:05,  1.59it/s]
 30%|###       | 3/10 [00:01<00:04,  1.62it/s]
 40%|####      | 4/10 [00:02<00:03,  1.63it/s]
 50%|#####     | 5/10 [00:03<00:03,  1.64it/s]
 60%|######    | 6/10 [00:03<00:02,  1.64it/s]
 70%|#######   | 7/10 [00:04<00:01,  1.64it/s]
 80%|########  | 8/10 [00:04<00:01,  1.64it/s]
 90%|######### | 9/10 [00:05<00:00,  1.63it/s]
100%|##########| 10/10 [00:06<00:00,  1.62it/s]
100%|##########| 10/10 [00:06<00:00,  1.62it/s]

<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7f59f696b490>

Specific Co-Activation Likelihood Estimation

Important

The SCALE algorithm is very memory intensive, so we don’t run it within the documentation.

import numpy as np

from nimare.meta.cbma.ale import SCALE
from nimare.utils import vox2mm

xyz = vox2mm(
    np.vstack(np.where(dset.masker.mask_img.get_fdata())).T,
    dset.masker.mask_img.affine,
)

meta = SCALE(xyz=xyz, n_iters=10)
results = meta.fit(dset)

ALE-Based Subtraction Analysis

from nimare.meta.cbma.ale import ALESubtraction

meta = ALESubtraction(n_iters=10, n_cores=1)
results = meta.fit(dset1, dset2)

plot_stat_map(
    results.get_map("z_desc-group1MinusGroup2"),
    cut_coords=[0, 0, -8],
    draw_cross=False,
    cmap="RdBu_r",
    threshold=0.1,
)
01 plot cbma

Out:

  0%|          | 0/10 [00:00<?, ?it/s]
 10%|#         | 1/10 [00:03<00:30,  3.33s/it]
 20%|##        | 2/10 [00:03<00:12,  1.50s/it]
 30%|###       | 3/10 [00:03<00:06,  1.09it/s]
 40%|####      | 4/10 [00:04<00:03,  1.55it/s]
 50%|#####     | 5/10 [00:04<00:02,  2.03it/s]
 60%|######    | 6/10 [00:04<00:01,  2.50it/s]
 70%|#######   | 7/10 [00:04<00:01,  2.92it/s]
 80%|########  | 8/10 [00:04<00:00,  3.28it/s]
 90%|######### | 9/10 [00:05<00:00,  3.60it/s]
100%|##########| 10/10 [00:05<00:00,  3.83it/s]
100%|##########| 10/10 [00:05<00:00,  1.87it/s]

  0%|          | 0/228483 [00:00<?, ?it/s]
  0%|          | 1099/228483 [00:00<00:20, 10989.51it/s]
  1%|          | 2198/228483 [00:00<00:20, 10982.24it/s]
  1%|1         | 3297/228483 [00:00<00:20, 10964.66it/s]
  2%|1         | 4394/228483 [00:00<00:20, 10959.88it/s]
  2%|2         | 5490/228483 [00:00<00:20, 10923.46it/s]
  3%|2         | 6610/228483 [00:00<00:20, 11015.75it/s]
  3%|3         | 7712/228483 [00:00<00:20, 11011.55it/s]
  4%|3         | 8817/228483 [00:00<00:19, 11021.29it/s]
  4%|4         | 9924/228483 [00:00<00:19, 11034.39it/s]
  5%|4         | 11028/228483 [00:01<00:19, 11018.13it/s]
  5%|5         | 12138/228483 [00:01<00:19, 11041.70it/s]
  6%|5         | 13257/228483 [00:01<00:19, 11084.16it/s]
  6%|6         | 14372/228483 [00:01<00:19, 11101.43it/s]
  7%|6         | 15486/228483 [00:01<00:19, 11112.37it/s]
  7%|7         | 16598/228483 [00:01<00:19, 11109.58it/s]
  8%|7         | 17709/228483 [00:01<00:19, 11074.89it/s]
  8%|8         | 18817/228483 [00:01<00:18, 11068.73it/s]
  9%|8         | 19944/228483 [00:01<00:18, 11127.26it/s]
  9%|9         | 21057/228483 [00:01<00:18, 11086.29it/s]
 10%|9         | 22166/228483 [00:02<00:18, 11083.52it/s]
 10%|#         | 23275/228483 [00:02<00:18, 11049.14it/s]
 11%|#         | 24380/228483 [00:02<00:18, 11012.52it/s]
 11%|#1        | 25490/228483 [00:02<00:18, 11037.09it/s]
 12%|#1        | 26594/228483 [00:02<00:26, 7619.15it/s]
 12%|#2        | 27717/228483 [00:02<00:23, 8440.89it/s]
 13%|#2        | 28812/228483 [00:02<00:22, 9055.04it/s]
 13%|#3        | 29936/228483 [00:02<00:20, 9621.27it/s]
 14%|#3        | 31054/228483 [00:02<00:19, 10041.05it/s]
 14%|#4        | 32182/228483 [00:03<00:18, 10384.35it/s]
 15%|#4        | 33307/228483 [00:03<00:18, 10628.22it/s]
 15%|#5        | 34415/228483 [00:03<00:18, 10758.67it/s]
 16%|#5        | 35543/228483 [00:03<00:17, 10909.52it/s]
 16%|#6        | 36657/228483 [00:03<00:17, 10975.35it/s]
 17%|#6        | 37767/228483 [00:03<00:17, 10988.88it/s]
 17%|#7        | 38896/228483 [00:03<00:17, 11076.97it/s]
 18%|#7        | 40019/228483 [00:03<00:16, 11120.11it/s]
 18%|#8        | 41136/228483 [00:03<00:16, 11041.84it/s]
 18%|#8        | 42244/228483 [00:03<00:16, 11036.63it/s]
 19%|#8        | 43363/228483 [00:04<00:16, 11081.67it/s]
 19%|#9        | 44479/228483 [00:04<00:16, 11103.47it/s]
 20%|#9        | 45594/228483 [00:04<00:16, 11117.04it/s]
 20%|##        | 46709/228483 [00:04<00:16, 11124.71it/s]
 21%|##        | 47823/228483 [00:04<00:16, 11114.43it/s]
 21%|##1       | 48935/228483 [00:04<00:16, 11094.45it/s]
 22%|##1       | 50045/228483 [00:04<00:16, 10985.88it/s]
 22%|##2       | 51144/228483 [00:04<00:17, 10285.84it/s]
 23%|##2       | 52195/228483 [00:04<00:17, 10349.43it/s]
 23%|##3       | 53237/228483 [00:04<00:17, 10212.17it/s]
 24%|##3       | 54270/228483 [00:05<00:17, 10244.22it/s]
 24%|##4       | 55324/228483 [00:05<00:16, 10330.37it/s]
 25%|##4       | 56369/228483 [00:05<00:16, 10363.21it/s]
 25%|##5       | 57427/228483 [00:05<00:16, 10423.44it/s]
 26%|##5       | 58471/228483 [00:05<00:16, 10419.16it/s]
 26%|##6       | 59523/228483 [00:05<00:16, 10448.78it/s]
 27%|##6       | 60576/228483 [00:05<00:16, 10472.35it/s]
 27%|##6       | 61631/228483 [00:05<00:15, 10494.18it/s]
 27%|##7       | 62681/228483 [00:05<00:15, 10458.57it/s]
 28%|##7       | 63736/228483 [00:05<00:15, 10485.77it/s]
 28%|##8       | 64785/228483 [00:06<00:22, 7344.34it/s]
 29%|##8       | 65900/228483 [00:06<00:19, 8220.62it/s]
 29%|##9       | 66990/228483 [00:06<00:18, 8883.19it/s]
 30%|##9       | 68094/228483 [00:06<00:16, 9445.03it/s]
 30%|###       | 69215/228483 [00:06<00:16, 9923.03it/s]
 31%|###       | 70319/228483 [00:06<00:15, 10234.85it/s]
 31%|###1      | 71428/228483 [00:06<00:14, 10477.06it/s]
 32%|###1      | 72522/228483 [00:06<00:14, 10608.92it/s]
 32%|###2      | 73644/228483 [00:07<00:14, 10785.64it/s]
 33%|###2      | 74741/228483 [00:07<00:14, 10839.84it/s]
 33%|###3      | 75848/228483 [00:07<00:13, 10905.39it/s]
 34%|###3      | 76973/228483 [00:07<00:13, 11005.05it/s]
 34%|###4      | 78102/228483 [00:07<00:13, 11089.47it/s]
 35%|###4      | 79215/228483 [00:07<00:13, 11020.04it/s]
 35%|###5      | 80329/228483 [00:07<00:13, 11054.34it/s]
 36%|###5      | 81442/228483 [00:07<00:13, 11074.95it/s]
 36%|###6      | 82555/228483 [00:07<00:13, 11091.34it/s]
 37%|###6      | 83666/228483 [00:07<00:13, 11094.14it/s]
 37%|###7      | 84791/228483 [00:08<00:12, 11138.45it/s]
 38%|###7      | 85910/228483 [00:08<00:12, 11152.61it/s]
 38%|###8      | 87032/228483 [00:08<00:12, 11170.49it/s]
 39%|###8      | 88150/228483 [00:08<00:12, 11130.58it/s]
 39%|###9      | 89264/228483 [00:08<00:12, 11077.17it/s]
 40%|###9      | 90372/228483 [00:08<00:12, 11061.71it/s]
 40%|####      | 91479/228483 [00:08<00:12, 11059.04it/s]
 41%|####      | 92585/228483 [00:08<00:12, 11042.37it/s]
 41%|####1     | 93690/228483 [00:08<00:12, 11036.39it/s]
 41%|####1     | 94796/228483 [00:08<00:12, 11042.37it/s]
 42%|####1     | 95901/228483 [00:09<00:12, 11040.01it/s]
 42%|####2     | 97017/228483 [00:09<00:11, 11074.34it/s]
 43%|####2     | 98136/228483 [00:09<00:11, 11107.48it/s]
 43%|####3     | 99257/228483 [00:09<00:11, 11135.78it/s]
 44%|####3     | 100371/228483 [00:09<00:11, 11065.61it/s]
 44%|####4     | 101478/228483 [00:09<00:11, 11060.04it/s]
 45%|####4     | 102611/228483 [00:09<00:11, 11137.70it/s]
 45%|####5     | 103725/228483 [00:09<00:11, 11132.99it/s]
 46%|####5     | 104839/228483 [00:09<00:11, 11126.83it/s]
 46%|####6     | 105952/228483 [00:09<00:11, 11121.00it/s]
 47%|####6     | 107074/228483 [00:10<00:10, 11149.86it/s]
 47%|####7     | 108190/228483 [00:10<00:10, 11124.65it/s]
 48%|####7     | 109314/228483 [00:10<00:10, 11158.86it/s]
 48%|####8     | 110430/228483 [00:10<00:10, 11158.30it/s]
 49%|####8     | 111546/228483 [00:10<00:10, 11122.15it/s]
 49%|####9     | 112659/228483 [00:10<00:15, 7385.24it/s]
 50%|####9     | 113749/228483 [00:10<00:14, 8160.67it/s]
 50%|#####     | 114852/228483 [00:10<00:12, 8848.20it/s]
 51%|#####     | 115975/228483 [00:11<00:11, 9455.51it/s]
 51%|#####1    | 117077/228483 [00:11<00:11, 9872.91it/s]
 52%|#####1    | 118179/228483 [00:11<00:10, 10188.50it/s]
 52%|#####2    | 119282/228483 [00:11<00:10, 10425.73it/s]
 53%|#####2    | 120405/228483 [00:11<00:10, 10654.70it/s]
 53%|#####3    | 121509/228483 [00:11<00:09, 10765.07it/s]
 54%|#####3    | 122630/228483 [00:11<00:09, 10893.76it/s]
 54%|#####4    | 123754/228483 [00:11<00:09, 10993.72it/s]
 55%|#####4    | 124877/228483 [00:11<00:09, 11061.61it/s]
 55%|#####5    | 125991/228483 [00:11<00:09, 11070.68it/s]
 56%|#####5    | 127103/228483 [00:12<00:09, 11057.71it/s]
 56%|#####6    | 128224/228483 [00:12<00:09, 11100.50it/s]
 57%|#####6    | 129347/228483 [00:12<00:08, 11137.70it/s]
 57%|#####7    | 130463/228483 [00:12<00:08, 11132.49it/s]
 58%|#####7    | 131578/228483 [00:12<00:08, 11028.60it/s]
 58%|#####8    | 132682/228483 [00:12<00:08, 11015.11it/s]
 59%|#####8    | 133796/228483 [00:12<00:08, 11051.07it/s]
 59%|#####9    | 134902/228483 [00:12<00:08, 10986.93it/s]
 60%|#####9    | 136002/228483 [00:12<00:08, 10990.75it/s]
 60%|######    | 137122/228483 [00:12<00:08, 11050.95it/s]
 60%|######    | 138228/228483 [00:13<00:08, 11032.28it/s]
 61%|######    | 139332/228483 [00:13<00:08, 10951.08it/s]
 61%|######1   | 140437/228483 [00:13<00:08, 10979.66it/s]
 62%|######1   | 141550/228483 [00:13<00:07, 11021.98it/s]
 62%|######2   | 142655/228483 [00:13<00:07, 11029.97it/s]
 63%|######2   | 143759/228483 [00:13<00:07, 11020.45it/s]
 63%|######3   | 144889/228483 [00:13<00:07, 11103.65it/s]
 64%|######3   | 146000/228483 [00:13<00:07, 11092.30it/s]
 64%|######4   | 147110/228483 [00:13<00:07, 10994.71it/s]
 65%|######4   | 148210/228483 [00:13<00:07, 10794.55it/s]
 65%|######5   | 149291/228483 [00:14<00:07, 10719.76it/s]
 66%|######5   | 150364/228483 [00:14<00:07, 10643.54it/s]
 66%|######6   | 151429/228483 [00:14<00:07, 10603.64it/s]
 67%|######6   | 152490/228483 [00:14<00:07, 10557.61it/s]
 67%|######7   | 153546/228483 [00:14<00:07, 10480.87it/s]
 68%|######7   | 154595/228483 [00:14<00:07, 10448.45it/s]
 68%|######8   | 155640/228483 [00:14<00:06, 10445.50it/s]
 69%|######8   | 156685/228483 [00:14<00:06, 10444.36it/s]
 69%|######9   | 157730/228483 [00:14<00:06, 10412.88it/s]
 69%|######9   | 158778/228483 [00:14<00:06, 10431.61it/s]
 70%|######9   | 159827/228483 [00:15<00:06, 10446.80it/s]
 70%|#######   | 160872/228483 [00:15<00:06, 10372.68it/s]
 71%|#######   | 161917/228483 [00:15<00:06, 10395.03it/s]
 71%|#######1  | 162969/228483 [00:15<00:06, 10430.09it/s]
 72%|#######1  | 164019/228483 [00:15<00:06, 10448.48it/s]
 72%|#######2  | 165068/228483 [00:15<00:06, 10458.39it/s]
 73%|#######2  | 166121/228483 [00:15<00:05, 10477.18it/s]
 73%|#######3  | 167176/228483 [00:15<00:05, 10496.86it/s]
 74%|#######3  | 168226/228483 [00:15<00:05, 10483.34it/s]
 74%|#######4  | 169275/228483 [00:15<00:05, 10453.42it/s]
 75%|#######4  | 170321/228483 [00:16<00:08, 6702.15it/s]
 75%|#######5  | 171363/228483 [00:16<00:07, 7499.98it/s]
 75%|#######5  | 172388/228483 [00:16<00:06, 8144.69it/s]
 76%|#######5  | 173418/228483 [00:16<00:06, 8684.25it/s]
 76%|#######6  | 174470/228483 [00:16<00:05, 9167.95it/s]
 77%|#######6  | 175505/228483 [00:16<00:05, 9490.59it/s]
 77%|#######7  | 176541/228483 [00:16<00:05, 9733.49it/s]
 78%|#######7  | 177592/228483 [00:16<00:05, 9954.75it/s]
 78%|#######8  | 178640/228483 [00:17<00:04, 10104.97it/s]
 79%|#######8  | 179685/228483 [00:17<00:04, 10203.08it/s]
 79%|#######9  | 180731/228483 [00:17<00:04, 10277.09it/s]
 80%|#######9  | 181789/228483 [00:17<00:04, 10364.56it/s]
 80%|########  | 182842/228483 [00:17<00:04, 10412.95it/s]
 80%|########  | 183889/228483 [00:17<00:04, 10410.50it/s]
 81%|########  | 184938/228483 [00:17<00:04, 10431.31it/s]
 81%|########1 | 185993/228483 [00:17<00:04, 10464.45it/s]
 82%|########1 | 187042/228483 [00:17<00:03, 10469.64it/s]
 82%|########2 | 188091/228483 [00:17<00:03, 10461.14it/s]
 83%|########2 | 189139/228483 [00:18<00:03, 10466.31it/s]
 83%|########3 | 190188/228483 [00:18<00:03, 10471.80it/s]
 84%|########3 | 191241/228483 [00:18<00:03, 10488.54it/s]
 84%|########4 | 192291/228483 [00:18<00:03, 10471.25it/s]
 85%|########4 | 193339/228483 [00:18<00:03, 10410.65it/s]
 85%|########5 | 194381/228483 [00:18<00:03, 10381.80it/s]
 86%|########5 | 195431/228483 [00:18<00:03, 10414.71it/s]
 86%|########5 | 196473/228483 [00:18<00:03, 10390.42it/s]
 86%|########6 | 197513/228483 [00:18<00:02, 10365.08it/s]
 87%|########6 | 198564/228483 [00:18<00:02, 10402.51it/s]
 87%|########7 | 199615/228483 [00:19<00:02, 10433.24it/s]
 88%|########7 | 200659/228483 [00:19<00:02, 10433.34it/s]
 88%|########8 | 201703/228483 [00:19<00:02, 10426.92it/s]
 89%|########8 | 202758/228483 [00:19<00:02, 10462.27it/s]
 89%|########9 | 203811/228483 [00:19<00:02, 10481.13it/s]
 90%|########9 | 204860/228483 [00:19<00:02, 10470.02it/s]
 90%|######### | 205912/228483 [00:19<00:02, 10482.84it/s]
 91%|######### | 206963/228483 [00:19<00:02, 10490.44it/s]
 91%|#########1| 208013/228483 [00:19<00:01, 10483.80it/s]
 92%|#########1| 209062/228483 [00:19<00:01, 10460.75it/s]
 92%|#########1| 210109/228483 [00:20<00:01, 10455.25it/s]
 92%|#########2| 211160/228483 [00:20<00:01, 10471.26it/s]
 93%|#########2| 212208/228483 [00:20<00:01, 10472.83it/s]
 93%|#########3| 213256/228483 [00:20<00:01, 10471.06it/s]
 94%|#########3| 214304/228483 [00:20<00:01, 10414.80it/s]
 94%|#########4| 215346/228483 [00:20<00:01, 10385.46it/s]
 95%|#########4| 216393/228483 [00:20<00:01, 10409.00it/s]
 95%|#########5| 217434/228483 [00:20<00:01, 10399.46it/s]
 96%|#########5| 218474/228483 [00:20<00:00, 10370.61it/s]
 96%|#########6| 219521/228483 [00:20<00:00, 10398.03it/s]
 97%|#########6| 220571/228483 [00:21<00:00, 10427.55it/s]
 97%|#########6| 221616/228483 [00:21<00:00, 10432.03it/s]
 97%|#########7| 222660/228483 [00:21<00:00, 10433.81it/s]
 98%|#########7| 223714/228483 [00:21<00:00, 10464.49it/s]
 98%|#########8| 224766/228483 [00:21<00:00, 10479.90it/s]
 99%|#########8| 225815/228483 [00:21<00:00, 10466.00it/s]
 99%|#########9| 226865/228483 [00:21<00:00, 10475.96it/s]
100%|#########9| 227918/228483 [00:21<00:00, 10491.36it/s]
100%|##########| 228483/228483 [00:28<00:00, 7949.95it/s]

<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7f59de86ef90>

Total running time of the script: ( 1 minutes 20.044 seconds)

Gallery generated by Sphinx-Gallery